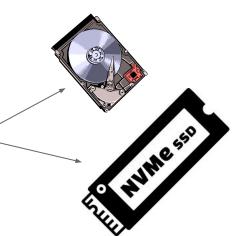

CPE 470 - PCI Express

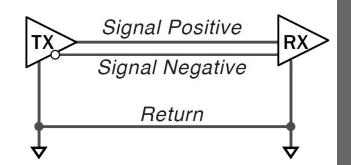
Why PCIe?

Glossary


PCle: Peripheral Component

Interconnect Express

- Industry Standard
 - Primary interconnect used by PCs, graphics cards, servers, data centers
- Fast
 - Maxes out at ~64 GBps
- Fault Tolerance
 - Unlike previous interconnect protocols (like SPI), PCIe has inbuilt fault tolerance, and deals with
- Links to many other protocols
 - SATA for hard drives, NVMe for SSDs,

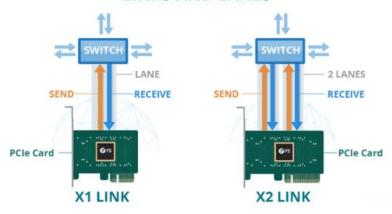

But First...

Differential Signals

Glossary

Differential Pair: two wires carrying opposite polarities of a differential signal

- At higher speeds, signal noise becomes a dominating consideration
 - Solution: Use double the wires
- Differential Pair encodes signal and its inverse
 - Noise equally impacts each wire
 - The difference offers twice the signal strength, and higher immunity to noise

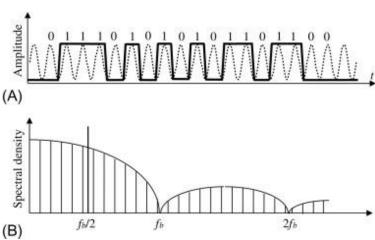


PCIe - Physical Layer

PCIe **Link** between devices:

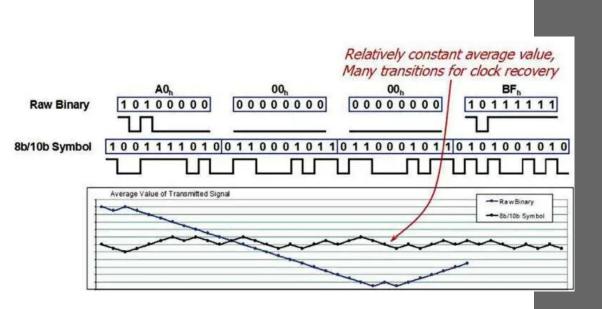
- Interconnect composed of Lanes
- Lane is composed of two differential pairs
 - One Transmit Pair, One Receive Pair
 - 4 wires total
- Interconnect characterized by number of Lanes:
 - o Powers of 2:
 - **x**1, x2, x4, x8, x16
 - Where x16 is 16 lanes, 64 wires
- What is missing?
 - Clock?
 - How can each lane reach 4GB/s? (PCle Gen 5)

PCI EXPRESS LINKS AND LANES

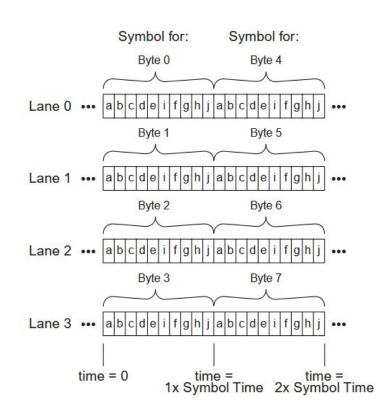


Clock Recovery and Encoding

Glossary


Clock Recovery: extract clock from serial data stream

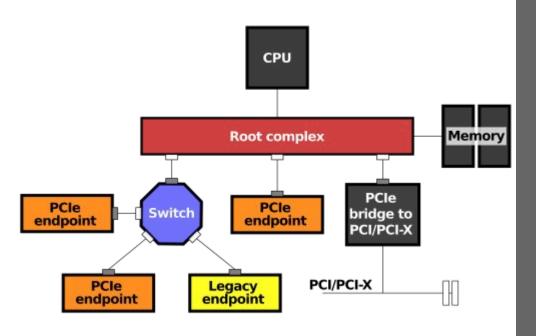
- Clock Synchronization across systems is hard
 - PCB routing a 4 GHz clock would be nightmarish
- How can we transmit data without a common clock?
 - Encode the clock in the data!
- Use clock recovery to extract clock from switching in the data
 - Problem: How can you encode the clock in a static signal, such as sending all 0 or 1?
 - Solution: Encoding Schemes


Encoding Schemes

- Encoding Schemes
 - Use more bits to guarantee switching
- PCle uses **8b/10b**:
 - Use 10 bits to represent 8 bits
 - 8'b0 becomes
 10'b1001110100
 - Lose 25% of bandwidth
- PCle 3 moved to 128b/130b
 - Lose under 2% of bandwidth

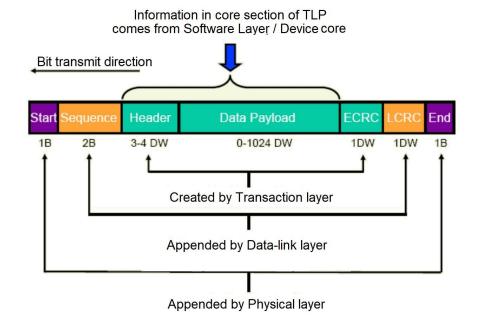
PCIe - Byte Ordering

- PCIe differs from SPI in its byte ordering
 - In SPI, QSPI, etc, one byte gets distributed across all data lines
 - In PCIe, each byte stays in their lane!
 - Different bytes on each lane



PCIe Topology

- Point-to-Point Connections
 - One device per Link
- All links reach CPU through the Root Complex
- Use a Switch to connect multiple endpoints together
 - Can act as a bottleneck if trying to talk to multiple endpoints


Glossary

Root Complex: connects CPU and its memory to one or more PCIe ports

PCIe Packet Structure

- Starts with primary transaction layer header and data
 - Often memory operation with data to transfer
- Wrapped in a data link layer
 - Uniquely identifies the packet
- Appended with start and end sequence at the physical layer

Glossary

TLP: Transaction Layer Packet

PCIe Transaction Layer

- This layer controls what data is being transmitted
- Memory reads/writes is most common
 - Many non-memory devices are mapped as memory
- IO interfaces specifically with IO ports, which were an x86 standard
 - Tends to be outdated, kept for legacy reasons

Address Space	Transaction Types	Basic Usage							
Memory	Read	Transfer data to/from a memory-mapped							
	Write	location							
I/O	Read	Transfer data to/from an I/O-mapped location							
	Write								
Configuration	Read	Device Function configuration/setup							
	Write								
Message	Baseline (including Vendor– defined)	From event signaling mechanism to general purpose messaging							

PCIe Data Link Layer

Glossary

DLLP: Data Link Layer Packets **CRC**: Cyclic Redundancy Check

- Devices initialize their connection over the Data Link Layer
 - Use **DLLP**s to set up link, power, and flow control
 - PCIe is hot swappable → need a way to discover new devices when plugged in
- Uniquely identify each packet with a sequence number
 - Helps to acknowledge or indicate errors with packets later on
- Create a CRC for error detection
 - If any bits are lost in transit, CRC should show this and lead packet to be invalidated

+0						+1								+2									/								
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	١
0	0	0	0		TLP Sequence Number										{TLP Header}												_/)			

	/	+(N-3) 1 0 7 6 5 4 3 2 1 0							+(N-2)								+(N-1)								+N									
(1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
•••)-		31															LC	RC															0

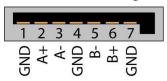
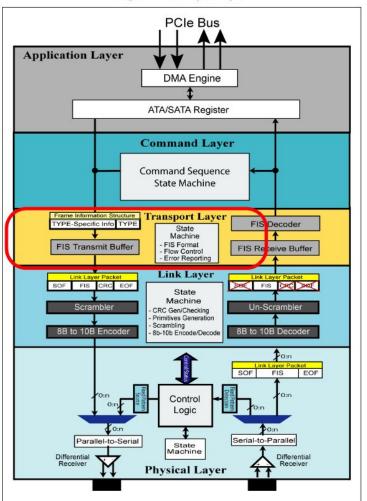
PCIe Flow Control

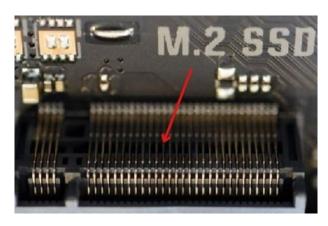
- Flow Control is used to make sure TLPs are only sent when there is available room for them
 - TLPs are stored in buffers
 - If there was no space left in a buffer, a TLP would be dropped →
 failure
- PCIe implements flow control using Credits
 - Each link gives its partner a set number of credits
 - As transmitter sends packets, it consumes credits
 - Once out of credits, has to wait for receiver to finish processing and give it new credits

SATA

- Interface with hard drives and SSDs!
- Similar to one lane of PCIE in some ways:
 - Set of 2 differential signals
 - Clock recovery
 - 8b/10b encoding
- Protocol specific to storage devices
- Often adapted from PCIe
 - "Chipset" on a motherboard adapts from PCIe to interfaces like Sata

SATA Pinout - Plug


Figure 4-2: Transport Layer

NVMe: for SSDs

- SSDs tend to have their own form factors based on existing protocols
- Need higher speed than SATA alone
 - Combine SATA with PCle or just use PCle

SATA Express

- 2 SATA Ports
- 2 PCle Lanes

M.2

Up to 4 PCle Lanes

References

- https://www.synopsys.com/blogs/chip-design/pcie-gen1-speed-basics.html
- https://sparxeng.com/blog/hardware/mastering-differential-signals
- https://en.wikipedia.org/wiki/PCI_Express